Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Toxicol ; 5: 1271833, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37886124

RESUMEN

A functional human skin barrier is critical in limiting harmful exposure to environmental agents and regulating the absorption of intentionally applied topical drug and cosmetic products. Inherent differences in the skin barrier between consumers due to extrinsic and intrinsic factors are an important consideration in the safety assessment of dermatological products. Race is a concept often used to describe a group of people who share distinct physical characteristics. The observed predisposition of specific racial groups to certain skin pathologies highlights the potential differences in skin physiology between these groups. In the context of the human skin barrier, however, the current data correlating function to race often conflict, likely as a consequence of the range of experimental approaches and controls used in the existing works. To date, a variety of methods have been developed for evaluating compound permeation through the human skin, both in vivo and in vitro. Additionally, great strides have been made in the development of reconstructed human pigmented skin models, with the flexibility to incorporate melanocytes from donors of different race and pigmentation levels. Together, the advances in the production of reconstructed human skin models and the increased adoption of in vitro methodologies show potential to aid in the standardization of dermal absorption studies for discerning racial- and skin pigmentation-dependent differences in the human skin barrier. This review analyzes the existing data on skin permeation, focusing on its interaction with race and skin pigmentation, and highlights the tools and research opportunities to better represent the diversity of the human populations in dermal absorption assessments.

2.
Toxicol In Vitro ; 91: 105630, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37315744

RESUMEN

Skin permeation is a primary consideration in the safety assessment of cosmetic ingredients, topical drugs, and human users handling veterinary medicinal products. While excised human skin (EHS) remains the 'gold standard' for in vitro permeation testing (IVPT) studies, unreliable supply and high cost motivate the search for alternative skin barrier models. In this study, a standardized dermal absorption testing protocol was developed to evaluate the suitability of alternative skin barrier models to predict skin absorption in humans. Under this protocol, side-by-side assessments of a commercially available reconstructed human epidermis (RhE) model (EpiDerm-200-X, MatTek), a synthetic barrier membrane (Strat-M, Sigma-Aldrich), and EHS were performed. The skin barrier models were mounted on Franz diffusion cells and the permeation of caffeine, salicylic acid, and testosterone was quantified. Transepidermal water loss (TEWL) and histology of the biological models were also compared. EpiDerm-200-X exhibited native human epidermis-like morphology, including a characteristic stratum corneum, but had an elevated TEWL as compared to EHS. The mean 6 h cumulative permeation of a finite dose (6 nmol/cm2) of caffeine and testosterone was highest in EpiDerm-200-X, followed by EHS and Strat-M. Salicylic acid permeated most in EHS, followed by EpiDerm-200-X and Strat-M. Overall, evaluating novel alternative skin barrier models in the manner outlined herein has the potential to reduce the time from basic science discovery to regulatory impact.


Asunto(s)
Cafeína , Absorción Cutánea , Humanos , Piel/metabolismo , Epidermis/metabolismo , Ácido Salicílico/metabolismo , Testosterona/metabolismo , Agua/metabolismo
3.
Eur J Cell Biol ; 101(3): 151233, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35605366

RESUMEN

Sphingosine-1-phosphate (S1P) signals to enhance or destabilize the vascular endothelial barrier depending on the receptor engaged. Here, we investigated the differential barrier effects of S1P on two influential primary endothelial cell (EC) types, human umbilical vein endothelial cells (HUVECs) and human pulmonary microvascular endothelial cells (HPMECs). S1PR1 (barrier protective) and S1PR3 (barrier disruptive) surface and gene expression were quantified by flow cytometry and immunofluorescence, and RT-qPCR, respectively. Functional evaluation of EC monolayer permeability in response to S1P was quantified with transendothelial electrical resistance (TEER) and small molecule permeability. S1P significantly enhanced HUVEC barrier function, while promoting HPMEC barrier breakdown. Immunofluorescence and flow cytometry analysis showed select, S1PR3-high HPMECs, suggesting susceptibility to barrier destabilization following S1P exposure. Reevaluation of HPMEC barrier following S1P exposure under inflamed conditions demonstrated synergistic barrier disruptive effects of pro-inflammatory cytokine and S1P. The role of the Rho-ROCK signaling pathway under these conditions was confirmed through ROCK1/2 inhibition (Y-27632). Thus, the heterogeneous responses of ECs to S1P signaling are mediated through Rho-ROCK signaling, and potentially driven by differences in the surface expression of S1PR3.


Asunto(s)
Lisofosfolípidos , Esfingosina , Células Cultivadas , Endotelio Vascular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Esfingosina/farmacología , Quinasas Asociadas a rho
4.
Analyst ; 147(2): 213-222, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34933322

RESUMEN

The COVID-19 pandemic demonstrated the public health benefits of reliable and accessible point-of-care (POC) diagnostic tests for viral infections. Despite the rapid development of gold-standard reverse transcription polymerase chain reaction (RT-PCR) assays for SARS-CoV-2 only weeks into the pandemic, global demand created logistical challenges that delayed access to testing for months and helped fuel the spread of COVID-19. Additionally, the extreme sensitivity of RT-PCR had a costly downside as the tests could not differentiate between patients with active infection and those who were no longer infectious but still shedding viral genomes. To address these issues for the future, we propose a novel membrane-based sensor that only detects intact virions. The sensor combines affinity and size based detection on a membrane-based sensor and does not require external power to operate or read. Specifically, the presence of intact virions, but not viral debris, fouls the membrane and triggers a macroscopically visible hydraulic switch after injection of a 40 µL sample with a pipette. The device, which we call the µSiM-DX (microfluidic device featuring a silicon membrane for diagnostics), features a biotin-coated microslit membrane with pores ∼2-3× larger than the intact virus. Streptavidin-conjugated antibody recognizing viral surface proteins are incubated with the sample for ∼1 hour prior to injection into the device, and positive/negative results are obtained within ten seconds of sample injection. Proof-of-principle tests have been performed using preparations of vaccinia virus. After optimizing slit pore sizes and porous membrane area, the fouling-based sensor exhibits 100% specificity and 97% sensitivity for vaccinia virus (n = 62). Moreover, the dynamic range of the sensor extends at least from 105.9 virions per mL to 1010.4 virions per mL covering the range of mean viral loads in symptomatic COVID-19 patients (105.6-107 RNA copies per mL). Forthcoming work will test the ability of our sensor to perform similarly in biological fluids and with SARS-CoV-2, to fully test the potential of a membrane fouling-based sensor to serve as a PCR-free alternative for POC containment efforts in the spread of infectious disease.


Asunto(s)
COVID-19 , Pandemias , Humanos , SARS-CoV-2 , Sensibilidad y Especificidad , Silicio , Virión
5.
Integr Biol (Camb) ; 12(11): 275-289, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33164044

RESUMEN

Endothelial cells (ECs) are an active component of the immune system and interact directly with inflammatory cytokines. While ECs are known to be polarized cells, the potential role of apicobasal polarity in response to inflammatory mediators has been scarcely studied. Acute inflammation is vital in maintaining healthy tissue in response to infection; however, chronic inflammation can lead to the production of systemic inflammatory cytokines and deregulated leukocyte trafficking, even in the absence of a local infection. Elevated levels of cytokines in circulation underlie the pathogenesis of sepsis, the leading cause of intensive care death. Because ECs constitute a key barrier between circulation (luminal interface) and tissue (abluminal interface), we hypothesize that ECs respond differentially to inflammatory challenge originating in the tissue versus circulation as in local and systemic inflammation, respectively. To begin this investigation, we stimulated ECs abluminally and luminally with the inflammatory cytokine tumor necrosis factor alpha (TNF-α) to mimic a key feature of local and systemic inflammation, respectively, in a microvascular mimetic (µSiM-MVM). Polarized IL-8 secretion and polymorphonuclear neutrophil (PMN) transmigration were quantified to characterize the EC response to luminal versus abluminal TNF-α. We observed that ECs uniformly secrete IL-8 in response to abluminal TNF-α and is followed by PMN transmigration. The response to abluminal treatment was coupled with the formation of ICAM-1-rich membrane ruffles on the apical surface of ECs. In contrast, luminally stimulated ECs secreted five times more IL-8 into the luminal compartment than the abluminal compartment and sequestered PMNs on the apical EC surface. Our results identify clear differences in the response of ECs to TNF-α originating from the abluminal versus luminal side of a monolayer for the first time and may provide novel insight into future inflammatory disease intervention strategies.


Asunto(s)
Biomimética , Sistema Inmunológico , Microcirculación , Factor de Necrosis Tumoral alfa/metabolismo , Adhesión Celular , Comunicación Celular/fisiología , Movimiento Celular , Citocinas/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Técnicas In Vitro , Inflamación , Mediadores de Inflamación/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-8/metabolismo , Microfluídica , Microscopía Fluorescente , Neutrófilos/citología , Permeabilidad , Sepsis/microbiología
6.
PLoS Pathog ; 16(10): e1008988, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33091079

RESUMEN

Staphylococcus aureus infection of bone is challenging to treat because it colonizes the osteocyte lacuno-canalicular network (OLCN) of cortical bone. To elucidate factors involved in OLCN invasion and identify novel drug targets, we completed a hypothesis-driven screen of 24 S. aureus transposon insertion mutant strains for their ability to propagate through 0.5 µm-sized pores in the Microfluidic Silicon Membrane Canalicular Arrays (µSiM-CA), developed to model S. aureus invasion of the OLCN. This screen identified the uncanonical S. aureus transpeptidase, penicillin binding protein 4 (PBP4), as a necessary gene for S. aureus deformation and propagation through nanopores. In vivo studies revealed that Δpbp4 infected tibiae treated with vancomycin showed a significant 12-fold reduction in bacterial load compared to WT infected tibiae treated with vancomycin (p<0.05). Additionally, Δpbp4 infected tibiae displayed a remarkable decrease in pathogenic bone-loss at the implant site with and without vancomycin therapy. Most importantly, Δpbp4 S. aureus failed to invade and colonize the OLCN despite high bacterial loads on the implant and in adjacent tissues. Together, these results demonstrate that PBP4 is required for S. aureus colonization of the OLCN and suggest that inhibitors may be synergistic with standard of care antibiotics ineffective against bacteria within the OLCN.


Asunto(s)
Osteomielitis/patología , Proteínas de Unión a las Penicilinas/metabolismo , Infecciones Estafilocócicas/complicaciones , Staphylococcus aureus/aislamiento & purificación , Animales , Antibacterianos/farmacología , Femenino , Ratones , Ratones Endogámicos BALB C , Osteomielitis/tratamiento farmacológico , Osteomielitis/metabolismo , Osteomielitis/microbiología , Proteínas de Unión a las Penicilinas/genética , Infecciones Estafilocócicas/microbiología , Vancomicina/farmacología
7.
Cell Mol Bioeng ; 13(2): 125-139, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32175026

RESUMEN

INTRODUCTION: The pathophysiological increase in microvascular permeability plays a well-known role in the onset and progression of diseases like sepsis and atherosclerosis. However, how interactions between neutrophils and the endothelium alter vessel permeability is often debated. METHODS: In this study, we introduce a microfluidic, silicon-membrane enabled vascular mimetic (µSiM-MVM) for investigating the role of neutrophils in inflammation-associated microvascular permeability. In utilizing optically transparent silicon nanomembrane technology, we build on previous microvascular models by enabling in situ observations of neutrophil-endothelium interactions. To evaluate the effects of neutrophil transmigration on microvascular model permeability, we established and validated electrical (transendothelial electrical resistance and impedance) and small molecule permeability assays that allow for the in situ quantification of temporal changes in endothelium junctional integrity. RESULTS: Analysis of neutrophil-expressed ß1 integrins revealed a prominent role of neutrophil transmigration and basement membrane interactions in increased microvascular permeability. By utilizing blocking antibodies specific to the ß1 subunit, we found that the observed increase in microvascular permeability due to neutrophil transmigration is constrained when neutrophil-basement membrane interactions are blocked. Having demonstrated the value of in situ measurements of small molecule permeability, we then developed and validated a quantitative framework that can be used to interpret barrier permeability for comparisons to conventional Transwell™ values. CONCLUSIONS: Overall, our results demonstrate the potential of the µSiM-MVM in elucidating mechanisms involved in the pathogenesis of inflammatory disease, and provide evidence for a role for neutrophils in inflammation-associated endothelial barrier disruption.

8.
Front Med Technol ; 2: 600616, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-35047883

RESUMEN

Inflammatory diseases and cancer metastases lack concrete pharmaceuticals for their effective treatment despite great strides in advancing our understanding of disease progression. One feature of these disease pathogeneses that remains to be fully explored, both biologically and pharmaceutically, is the passage of cancer and immune cells from the blood to the underlying tissue in the process of extravasation. Regardless of migratory cell type, all steps in extravasation involve molecular interactions that serve as a rich landscape of targets for pharmaceutical inhibition or promotion. Transendothelial migration (TEM), or the migration of the cell through the vascular endothelium, is a particularly promising area of interest as it constitutes the final and most involved step in the extravasation cascade. While in vivo models of cancer metastasis and inflammatory diseases have contributed to our current understanding of TEM, the knowledge surrounding this phenomenon would be significantly lacking without the use of in vitro platforms. In addition to the ease of use, low cost, and high controllability, in vitro platforms permit the use of human cell lines to represent certain features of disease pathology better, as seen in the clinic. These benefits over traditional pre-clinical models for efficacy and toxicity testing are especially important in the modern pursuit of novel drug candidates. Here, we review the cellular and molecular events involved in leukocyte and cancer cell extravasation, with a keen focus on TEM, as discovered by seminal and progressive in vitro platforms. In vitro studies of TEM, specifically, showcase the great experimental progress at the lab bench and highlight the historical success of in vitro platforms for biological discovery. This success shows the potential for applying these platforms for pharmaceutical compound screening. In addition to immune and cancer cell TEM, we discuss the promise of hepatocyte transplantation, a process in which systemically delivered hepatocytes must transmigrate across the liver sinusoidal endothelium to successfully engraft and restore liver function. Lastly, we concisely summarize the evolving field of porous membranes for the study of TEM.

9.
Nanomedicine ; 21: 102039, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31247310

RESUMEN

Staphylococcus aureus osteomyelitis is a devasting disease that often leads to amputation. Recent findings have shown that S. aureus is capable of invading the osteocyte lacuno-canalicular network (OLCN) of cortical bone during chronic osteomyelitis. Normally a 1 µm non-motile cocci, S. aureus deforms smaller than 0.5 µm in the sub-micron channels of the OLCN. Here we present the µSiM-CA (Microfluidic - Silicon Membrane - Canalicular Array) as an in vitro screening platform for the genetic mechanisms of S. aureus invasion. The µSiM-CA platform features an ultrathin silicon membrane with defined pores that mimic the openings of canaliculi. While we anticipated that S. aureus lacking the accessory gene regulator (agr) quorum-sensing system would not be capable of invading the OLCN, we found no differences in propagation compared to wild type in the µSiM-CA. However the µSiM-CA proved predictive as we also found that the agr mutant strain invaded the OLCN of murine tibiae.


Asunto(s)
Osteocitos/microbiología , Osteomielitis/genética , Infecciones Estafilocócicas/genética , Staphylococcus aureus/patogenicidad , Animales , Hueso Cortical/microbiología , Hueso Cortical/patología , Humanos , Ratones , Osteocitos/patología , Osteomielitis/microbiología , Osteomielitis/patología , Percepción de Quorum/genética , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Staphylococcus aureus/genética
10.
Small ; 15(6): e1804111, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30632319

RESUMEN

Selective cellular transmigration across the microvascular endothelium regulates innate and adaptive immune responses, stem cell localization, and cancer cell metastasis. Integration of traditional microporous membranes into microfluidic vascular models permits the rapid assay of transmigration events but suffers from poor reproduction of the cell permeable basement membrane. Current microporous membranes in these systems have large nonporous regions between micropores that inhibit cell communication and nutrient exchange on the basolateral surface reducing their physiological relevance. Here, the use of 100 nm thick continuously nanoporous silicon nitride membranes as a base substrate for lithographic fabrication of 3 µm pores is presented, resulting in a highly porous (≈30%), dual-scale nano- and microporous membrane for use in an improved vascular transmigration model. Ultrathin membranes are patterned using a precision laser writer for cost-effective, rapid micropore design iterations. The optically transparent dual-scale membranes enable complete observation of leukocyte egress across a variety of pore densities. A maximal density of ≈14 micropores per cell is discovered beyond which cell-substrate interactions are compromised giving rise to endothelial cell losses under flow. Addition of a subluminal extracellular matrix rescues cell adhesion, allowing for the creation of shear-primed endothelial barrier models on nearly 30% continuously porous substrates.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/citología , Membranas Artificiales , Modelos Biológicos , Nanopartículas/química , Migración Transendotelial y Transepitelial , Animales , Adhesión Celular , Colágeno/metabolismo , Matriz Extracelular/química , Geles/química , Humanos , Nanopartículas/ultraestructura , Nanoporos/ultraestructura , Neutrófilos/citología , Porosidad , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...